Chapter 14 - Differentiating Functions of Many Variables

14.1 The Partial derivative

Limit definitions of partial derivatives
Visualizing partial derivatives on a graph (slope of tangent line in a direction)
Estimating partial derivatives from tables and contour diagrams
Using units to interpret partial derivatives in application problems
14.2 Computing partial derivatives algebraically

Finding formulas for partial derivatives using techniques from Calculus I
(This includes using the product rule, quotient rule and chain rule.)
Interpretation of partial derivatives (vibrating string example)
14.3 Local linearity and the differential

Tangent plane to a surface at a point
Tangent plane approximations
The differential
14.4 Gradients and directional derivatives (of functions of 2 variables)

Constructing a unit-vector
Calculating the gradient vector
Geometric properties of the gradient vector
Finding directional derivative by dotting unit-vector with gradient vector
14.5 Gradients and directional derivatives of functions of 3 variables

Geometric properties of the gradient vector of functions of 3 variables
14.6 Chain rule

Using tree diagrams to determine chain rule formulas in various situations
Related rates problems (Parallel resistor problem, etc...)
14.7 Second-order partial derivatives

Geometric interpretations: concavity in a given direction, and "twist" in a direction
Determine signs of $2^{\text {nd }}$ order partial derivatives from a contour diagram
Mixed partial theorem (You will not need to prove or justify this theorem)
Taylor approximations

Chapter 15 Local Extrema

15.1 Local Extrema on an unbounded domain

General procedure: (1) Identify and find formula for objective function f. (2) Identify and find equation for constraint $g=c$. (3) Solve g for a variable and substitute into f. (4) find critical points of the function created in step 3. (5) classify critical points.
Critical points (gradient = zero vector, or gradient is undefined)
Second derivative test for functions of two variables (does not work where gradient is undefined!)
15.2 Global Extrema on an unbounded domain

Thm: if f is a $2^{\text {nd }}$ degree polynomial, then a local extremum is also a global extremum.
Application problems: Linear regression, etc...
15.3 : Using Lagrange Multipliers to find extrema of f on the curve: $g=c$ or on a bounded domain: $g<=c$

Thm: if f is continuous on a closed and bounded region R, then f must have global extrema
Extrema of f subject to the constraint $\mathrm{g}=\mathrm{c}$ can occur

1) at points satisfying the system of equations: $\operatorname{grad} f=\lambda(\operatorname{grad} g)$ AND $g=c$
2) at end points or corners of constraint curve, $g=c$
(note: you cannot use $2^{\text {nd }}$ derivatives test to classify these points)
Extrema of f subject to the constraint $\mathrm{g}<=\mathrm{c}$ can occur
3) at points satisfying the system of equations: grad $f=\lambda(\operatorname{grad} g)$ AND $g=c$
4) or at end points or corners of constraint curve, $g=c$
5) critical points of f that also satisfy $g<=c$
